517 research outputs found

    In situ growth regime characterization of cubic GaN using reflection high energy electron diffraction

    Full text link
    Cubic GaN layers were grown by plasma-assisted molecular beam epitaxy on 3C-SiC (001)substrates. In situ reflection high energy electron diffraction was used to quantitatively determine the Ga coverage of the GaN surface during growth. Using the intensity of the electron beam as a probe,optimum growth conditions of c-GaN were found when a 1 ML Ga coverage is formed at the surface. 1 micrometer thick c-GaN layers had a minimum surface roughness of 2.5 nm when a Ga coverage of 1 ML was established during growth. These samples revealed also a minimum full width at half maximum of the (002)rocking curve.Comment: 3pages with 4 figure

    Estimates of rates for dissociative recombination of NO2+_2^+ + e^- via various mechanisms

    Full text link
    We estimate rates for the dissociative recombination (DR) of NO2+_2^+ + e^-. Although accurate excited state potential energy curves for the excited states of the neutral are not available, we estimate that the 1 2^2{\Phi}g_g and the 1 2^2{\Pi}g_g states of the neutral may intersect the ground state cation potential energy surface near its equilibrium geometry. Using fixed nuclei scattering calculations we estimate the rate for direct DR via these states and find it to be significant. We also perform approximate calculations of DR triggered by the indirect mechanism, which suggest that the indirect DR rate for NO2+_2^+ is insignificant compared to the direct rate.Comment: Submitted to Phys Rev

    Effect of growth conditions on optical properties of CdSe/ZnSe single quantum dots

    Full text link
    In this work, we have investigated the optical properties of two samples of CdSe quantum dots by using submicro-photoluminescence spectroscopy. The effect of vicinal-surface GaAs substrates on their properties has been also assessed. The thinner sample, grown on a substrate with vicinal surface, includes only dots with a diameter of less than 10 nm (type A islands). Islands of an average diameter of about 16 nm (type B islands) that are related to a phase transition via a Stranski-Krastanow growth process are also distributed in the thicker sample grown on an oriented substrate. We have studied the evolution of lineshapes of PL spectra for these two samples by improving spatial resolution that was achieved using nanoapertures or mesa structures. It was found that the use of a substrate with the vicinal surface leads to the suppression of excitonic PL emitted from a wetting layer.Comment: 2pages, 2 figures, Proceedings of International Conference On Superlattices Nano-Structures And Nano-Devices, July, Toulouse, France, to appear in the special issue of Physica

    Ultrafast Excited-state Proton Transfer Processes: Energy Surfaces and On-the-fly Dynamics Simulations

    Get PDF
    The excited-state intramolecular proton transfer (ESIPT) is reviewed for several benchmark systems [o-hydroxybenzaldehyde (OHBA), salicylic acid and 2-(2′-hydroxyphenyl)-benzothiazole (HBT)] in order to verify the applicability of the time-dependent density functional theory (TDDFT) and the resolution-of-the-identity approximate second-order coupled cluster (RI-CC2) methods. It was found that these approaches are very well suited for the description of ESIPT processes. A comparative investigation of previous and new excited-state dynamics simulations is performed for HBT, 10-hydroxybenzo[h]quinoline (HBQ), and [2,2′-bipyridyl]-3,3′-diol (BP(OH)2). The time scale for the ESIPT process in these systems ranges in the time interval of 30−40 fs for HBT and HBQ and amounts to about 10 fs for the first proton transfer step in BP(OH)2. The dynamics simulations also show that the proton transfer in HBT is strongly supported by skeletal modes and the proton plays a rather passive role, whereas in HBQ a semipassive mechanism is found due to its increased rigidity in comparison to HBT. The special role of the double proton transfer in BP(OH)2 is discussed as well

    Universality of electron accumulation at wurtzite c- and a-plane and zinc-blende InN surfaces

    Get PDF
    Electron accumulation is found to occur at the surface of wurtzite (112¯0), (0001), and (0001¯) and zinc-blende (001) InN using x-ray photoemission spectroscopy. The accumulation is shown to be a universal feature of InN surfaces. This is due to the low Г-point conduction band minimum lying significantly below the charge neutrality level

    Cycloaddition of Strained Cyclic Alkenes and Ortho-Quinones: A Distortion/Interaction Analysis

    Get PDF
    The chemistry of strained unsaturated cyclic compounds has experienced remarkable growth in recent years via the development of metal−free click reactions. Among these reactions, the cycloaddition of cyclopropenes and their analogues to ortho-quinones has been established as a highly promising click reaction. The present work investigates the mechanism involved in the cycloaddition of strained dienes to ortho-quinones and structural factors that would influence this reaction. For this purpose, we use B97D density functional theory calculations throughout, and for relevant cases, we use spin component−scaled MP2 calculations and single−point domain-based local pair natural orbital coupled cluster (DLPNO-CCSD(T)) calculations. The outcomes are analyzed in detail using the distortion/interaction model, and suggestions for future experimental work are made
    corecore